Security & Pie \‘/

Android 9.0 & APK Security '

\/
y—

sourcetoad

Plan of Attack

@ Start at the hardware
e Work up to Android OS

e Climb into the Play Store

@ Discuss Application (APK) Gcﬁp.ay

Connor Tumbleson

Senior Software Engineer

@Sourcetoad

Apktool Maintainer

@iBotPeaches
connortumbleson.com

Some History

e Google I/O 2017 - 2 billion monthly

devices Yearly CVEs (Android)
e Popular target

2015 2016 2017 2018 (Oct)

L. sourcetoad

The Mobile World

e Bank applications

e PayPal / Venmo

@ Medical apps

e 2 Factor Authentication

e Travel + Lodging

Hardaware

@ Broadcom - BCM &wmga /@;m.le tiorm
o Intel - Atom

© MediaTek - MT
@ NVIDIA - Tegra

e Qualcomm - Snapdragon

e Samsung - EXynos

Snapdragon - Qualcomm

e SPU - Secure Processing Unit
e Isolated RAM/CPU/Power
e Vault-like

e TEE - Trusted Execution Environment
e HLOS - High Level Operating System
e Trusted execution of code

Android

Android Platform

@ Encryption

e Kernel

_ Android Security
© SandbOXlng 207/ Year In Review
® SELINUX

e Userspace
© Boot

bit.ly/2SII5xk I

@ Monthly updates
e Security Patch level droid Version e

o Easier to follow o eyt v
» OEMs follow E—

e Or try too...

Baseband version

Android Boot

@ AVB - Android Verified Boot

e Integrity of software during boot

vbmeta

Hash for boot
Hashtree metadata for system
Hashtree metadata for vendor

(signed by key0)

bit.ly/2rBWm3E

system
payload
hashtree

vendor
payload
hashtree

userdata

(other
partitions)

$. sourcetoad

Android Userspace - Before ASLR

Ox1 - memory
e Take some memory

Ox2 - secrets

Ox3 - memory

e We want the secrets

e Goal to take from 0Ox2 0x5 - memory

e Retry. Retry. Retry. 0x6 - memory
o Profit OX7 - memory

Android ASLR
277 - memory

e Address

277 - memory
© Space 227 - app
* Layout 2?? - memory
e Randomization ???7 - memory

?2?2? - secrets
277 - memory

Android ASLR Example

6704d000-67144000 r-xp 00000000 b3:17 465 [system/1lib/libstagefright.so
67144000-67145000 ---p 00000000 00:00 O

67145000-6714b000 r--p 000T7000 b3:17 465 /system/1ib/libstagefright.so
6714b000-6714c000 rwxp 000TfdOOO b3:17 465 /system/1ib/libstagefright.so
6714c000-6714d00O rw-p 000Te0OO0 b3:17 465 /system/1ib/libstagefright.so
6714d000-67161000 r-xp 00000000 b3:17 287 /system/1lib/libdrmframework.so
67161000-67164000 r--p 00013000 b3:17 287 /system/1lib/libdrmframework.so
67164000-67167000 rw-p 00000000 00:00 0

671b0000O-671b2000 r-xp 00000000 b3:17 487 [system/1lib/libstagefright yuv.so

671b2000-671b3000 r--p 00001000 b3:17 487 [system/1lib/libstagefright yuv.so

Android ASLR Example

670b0000O-671a7000
671a7000-671a8000
671a8000-6713e000
6713e000-671af000
671af000-671b00OO
671b0000-671c4000
671c4000-671c/7000
671c/7000-671c9000
67216000-67228000
67228000-67229000
67229000-67223000
6722a000-6722b000

r-xp 00000000
---p 00000000
r--p 0007000
rwxp 000Td0O00O
rw-p 000Te000
r-xp 00000000
r--p 00013000
rw-p 00000000
r-xp 00000000
---p 00000000
r--p 00012000
rwxp 00013000

b3:
010
b3:
b3:
b3:
b3:
b3:
010
b3:
3010
b3:
b3:

00

00

00

17

17
17
17
17
17

17

17
17

465

465
465
465
287
287

470

470
470

[system/lib/libstagefright.so

[syster
[/syster
[syster
[/syster

[syster

[/system/1lib/libstagefright omx.

[/system/1lib/libstagefright omx.
[system/1lib/libstagefright omx.

/1ib/libstagefright.so
/1ib/libstagefright.so
/1ib/libstagefright.so
/1ib/libdrmframework.so
/1ib/libdrmframework.so

SO

SO
SO

Android ASLR + DEP

e DEP - Data Execution Prevention
e In short - Prevents stack execution
e ASLR randomizes a lot.
e Stack, Heap, Libs, Linker, Execs, etc

Android SELInuUXx

e Security-Enhanced
e 20+ years old

@ Created by NSA
e Separation of information

e Constantly upgraded

Android SELInux - History

® 4.3 - Permissive "Warn, don’t block”
e 4.4 - Partially Enforced

@ 5.0 - Fully Enforced

@ 6.0 - Isolation between users

e /.0 - Mediaserver

@ 8.0 - Support with Treble

Android 9.0 SELInux

e Per App Sandbox :)

@ Non-Privileged Apps run in individual
contaliners

e No more leaking data, if >= API 28
@ Share data via Content Providers

7

Devs do this!

Android Encryption
@ Full Disk based (4.4 - Deprecated)

® Entire disk with one key.
e File based (7.0)

® File based with different keys
e Metadata based (9.0)

® Everything else with single key

Android 9.0 - Metadata Encryption

e What is everything else?
@ Directory Layouts
e File sizes, permissions, creation time

e Key protected in Keymaster which is
protected with Android Verified Boot

Hold up. What is Keymaster?

e Trusted environment for secrets.

@ V1 - Access Controls for keys

@ v2 - Version Binding

e v3 - ID Attestation (Serial, Name, IMEI)
e v4 - Strongbox (?)

Android 9.0 - Strongbox

@ Physical separate CPU

@ Secure Storage
@ True Random

e Tamper resistant
@ Side channel protection

Android 9.0 - CFI

e Control Flow Integrity

@ As of 2016, 86% of vulnerabilities on
Android are memory safety related.

@ SO what is it?

bit.ly/2CkX41IP

CFI - Example Program

—_—

login

correct
@ Basic program
@ Fail login, must retry.
e If successful, move onward.

CFI - Example Program (Attacker)

login

correct

‘e,

execute f
P

0..
4

CFI - Example Program (Attacker)

execute ﬂ
D

Android 9.0 - CFI

@ Disallows changes to original control flow
@ 9.0 - Enabled in components & kernel

@ Requires Link-Time Optimization

e Tough with shared libraries

Android Platform - Conclusion

@ Protection of Data

e Strong storage

e Self Protection (Kernel)
e Enforcement (SELinux)
e Verified Boot

Google PlayStore

PlayStore - Lets talk PHA

e Potentially Harmful Application
@ Google Play Protect

@ Finds lost devices

@ Blocks deceptive websites

e Detects and removes PHAS

So what is a PHA??

e Nothing good.
e Fraud
@ Phishing

@ Trojan
© Spyware
@ Ransomware

. sourcetoad

Known PHAs (2017 Report)

e Chamolis - sms fraud + botnet
e IcicleGum - spyware

e BreadSMS - sms fraud

e JamSkunk - toll fraud

e ExpensiveWall - sms fraud

e BambaPurple - toll fraud + ads

PHA - Chamois

e Largest PHA to date.
@ Multiple stages

e Features
e Generating invalid traffic (ads)

e Automatic app installs
e SMS fraud (premium texts)

bit.ly/2Cs5/7U1

SafetyNet

Google’s SafetyNet Overview

e Marketed as...
e Verify Apps API
@ Google Play Protect

@ The brains: SafetyNet
e Features: always changing

SafetyNet Internals

@ Thanks to @ikoz (John Kozyrakis)
@ Researches SafetyNet for years
@ Ko0z.10 <— plenty of blogs about it

@ First we need to get the binary.

http://koz.io

SafetyNet Download (Research)

- snet-extractor naster) ./run.sh
[*] Downloading SNET Flags file
% Total % Recelved % Xferd Average Speed Time Time T1ime

current

Dload Upload Total Spent Left Speed

100 809 © 809 0 ® 5597/ O --i--i-- ——i--i-- ——i--i--
[*] Successfully extracted "metadata_flags.txt’
[*] Successfully extracted 'payload.snet'’
[*] Detected snet version '10002010"
[*] Downloading SNET Jar file
% Total % Received % Xferd Average Speed Time T1ime T1ime

27 (8

current

Dload Upload Total Spent Left Speed
100 307k 100 307K 0 0 1704k O =R e e R = S W2 8 [

[*] Successfully extracted 'metadata_flags.txt’
[*] Successfully extracted 'payload.snet'
[*] ALl files successfully extract at '"snet-10002010"

bit.ly/2CrO98i

SafetyNet Explained

@ Runs under Google Mobile Services

e Google involved for Machine Learning
e Updates outside of OEM

e Complex

e Module based

SafetyNet Modules

e default_packages ® proxy

@ su_files e setuid_files

e settings e selinux_status
@ |locale ® apps

@ ss|l_handshake @ logcat

@ sslv3 fallback @ attest

SafetyNet Modules...

@ system_ca_cert © phone sky

® gmscore @ Internal_logs

@ event_log ® app_ops

e device_state @ snet_network

e mount_options @ snet_verify_apps

@ app_dir_wr @ and more...

SafetyNet - So what are those?

@ su_files - Checks for SU binaries

e ssl handshake - Detects MITM

e mx_record - Detects spoofed DNS

e google_page_info - Detects JS injection
e proxy - Detects known bad locations

SafetyNet - DroidGuard

e Secret Weapon - DroidGuard
@ Native blob of magic
@ Tough to RE
e Growing with features
e Anti-malware
@ Not talked about a lot. Quite hidden

Applications (APKSs)

APK Basics

e Think ZIP file.

@ Collection of resources and source

@ Assets, libraries, etc

@ One big package isolated for each app.

4
s

APK Basics - Just unzip it!

- app ls -ls
total 4284

4
4000

4 drwxrwxr -Xx
4 drwxXrwxr -X
4 drwxrwxr-x 4

268

“-TW-TW-TW-
~-TW-TW-T--

“-TW-TW-TW-

1
1
/
2
1
1

ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches

ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches

2292
4093496
4096
4096
4096
271380

Dec
)Je
Dec
) Je
Dec
Dec

31
31
27
27
27
31

1979 classes.dex
®7:11 res

1979 AndroidManifest.xml
07:11 kotlin
®7:11 META-INF

1979 resources.arsc

APK Basics - or Apktool it!

- app2 ls -1la

total 36

drwXrwxr - X
drwxr-Xxr-x
-TW-TW-T - -
-TW-TW-T - -
drwXrwxr -x
drwXrwxr -x
drwXrwxr -x
drwXrwxr -x

=

=
AN
AN WA, PN O

ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches

ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches
ibotpeaches

4096
4096

971
7108
4096
4096
4096
4096

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

27
27
27
27
27
27

O7:
O7:
O7:
O7:
O7:
O7:

12 .

12
12
12
12
12

AndroidManifest.xml
apktool.yml

kotlin

original

AXML vs XML

-> Desktop file app/AndroidManifest.xml
app/AndroidManifest.xml: Android binary XML

-» Desktop file app2/AndroidManifest.xml
app2/AndroidManifest.xml: XML 1.0 document, ASCII text

Apktool - Reverse Engineering APKSs

e Open source. Free.
e Decodes AXML, 9patch and dex files.
@ Thanks to smali project

p- -
MR TOoL

$.sourcetoad

APK Internals

e .dex - source files (Java)
® .ar'sSC - resources (strings, layouts, themes)

@ lIbS - native libraries

O,

res - images, raw, xml, etc
e and more.

APK Signatures

@ 1.0 - JAR Signature
@ 77?7 (security fixes)
e /.0 - APK Signature Block v2
@ 9.0 - APK Signature Block v3

1. Contents of ZIP entries 2. APK Signing Block 4. End of Central Directory

. sourcetoad

APK “"Master Key"” Woes

e APKs unzipped on Android

O B u g a fte r b u g Yet Another Android Master Key Bug - Jay Freeman (saurik)

www.saurik.com/id/19 v
Earlier this year, Bluebox Security announced they had found a bug in the way Android verifies that

@ Le d tO V 2 application packages have not been tampered with by ...

Exploit (& Fix) Android "Master Key" - Jay Freeman (saurik)
www.saurik.com/id/17 ~

In their blog post, Uncovering Android Master Key that Makes 99% of Devices ... A key concern this
raises is that applications in the wild might be signed with the ...

Android Bug Superior to Master Key - Jay Freeman (saurik)
www.saurik.com/id/18 ¥

This bug became known in the press as "Master Key", due to how it lets you effectively sign your code
using the keys of other developers. This bug has been ...

Android 9.0 - v3 Signature

e Key Rotation

@ Update keys as part of APK update
@ Think company acquiring app

@ Minor, big change was v2

In Closing

e Take those monthly updates
e Stay within the Play Store
e Leave those slow OEMs behind

@iBotPeaches SO U rcei‘oad

connortumbleson.com

