
CLICK HERE.exe

SQL Injections
Security Meetup

• This month: SQL Injections
• Next month: XSS / CSRF
• Meetup Group for times/dates

Month 1 of 12 (January)

• History of SQL
• Basic Injections
• Protections
• Advanced Injections
• Tips and Fun

Plan of Attack

Who are you?

• Connor Tumbleson
• Sourcetoad Engineer
• Apktool - RE Tool
• @iBotPeaches

• IBM introduced.
• Invented — all data is related.
• Went public a few years later.
• The language was known as SQL
• Structured Query Language

1970: SEQUEL is born

• Clauses - actions
• Expressions - scalars / arrays
• Predicates - conditions
• Queries - retrieve by condition
• Statements - modifying by condition

SQL: Syntax

With a 1999 Database

Login Page

Succesful Login

SELECT *
FROM users
WHERE username=‘user’
 AND password=‘connor’

A Basic Query

Lets try the “Admin” account

Lets try the “Admin” account

SELECT *
FROM users
WHERE username=‘admin’
 AND password=‘’ OR '1'='1' #’

A Basic Injected Query

A Basic Injected Query Explained

• End the existing blob
• Add a logic gate (OR)
• Pass the logic gate
• Comment out rest of query

SELECT * FROM users WHERE username=‘admin’ AND password=‘’ OR '1'='1' #’

Succesful Login :)

Too easy right? Well the world updated

• Prepared Statements (preferred)

• Stored Procedures (ew)

• Whitelist (not feasible)

• Escaping (cat n mouse)

SQL Protections: Escaping

• What do you escape?

SQL Protections: Danger of Escaping

• Unicode
• Implicit
Conversion

Escaping - XKCD

Credit to XKCD

SQL Protections: Whitelists

• Not feasible
• Ordering
• Filtering

• Searching (😕)

SQL Protections: Stored Procedures

• Moves logic into DB
• If done right, could work
• Dynamic generation could be bad
• Opinion: Dislike them

SQL Protections: Prepared Statements

• The only 100% solution.
• Period.
• Effectively splits data from logic.
• Laravel does this (behind scenes)

SELECT * FROM users WHERE username=? AND password=?

SQL Protections: Prepared Statements

• Common method is substitution via ?

•Alternatively, :named

SELECT * FROM users WHERE username=? AND password=?

SELECT * FROM users WHERE username=:username AND password=:password

Types of SQL Injections

• In Band
• Classic
• Error / Union

• Blind
• Boolean / Time

• Out of Band

SQL: In Band - Classic Error

• Information Extraction
• Learn database structure

SQL: In Band - Union

• Imagine a table of items.
• Injection of adding data (union)
• Pivot to system tables (easy to identify)

SQL: Blind - Boolean

• A method to answer T/F questions
• Does the page change based on query?
• Helpful when nothing outputting.

SQL: Blind - Timing

• Much like Boolean, but time oriented.
• SLEEP(1)
• Can issue T/F statement
• Wait for return

SQL: Out of Band

• Strange
• Different medium return from request.
• Exfiltration via HTTP/DNS/Email

WAF: Web Application Firewall

• Popular: ModSecurity
• Rules to prevent SQL injection
• Not perfect
• Works off regular expressions.

Advanced Time

Advanced Technique: Bitwise Operations

• Enumeration of a,b,c,d,e,f etc
• a = true/false
• b = true/false

• Enumeration via bit-shifting 00000000
• 0 = true/false
• 01 = true/false

Example Time.

• Lets assume we found a “settings” table
• Blind injection, so need to enumerate
• (but lets cheat first)

First. We need length

So now what?

• We know a length 3 string.
• We are assuming alphanumeric
• Lets try brute forcing two ways.
• Alphabet scan
• Bit shifting

Alphabet Scan - First Letter

• Request 1 - “a” - Fail
• Request 2 - “b” - Fail
• Request 3 - “c” - Pass :)
• 3 Requests - “c??”

Alphabet Scan - Second Letter

• Request 1 - “a” - Pass :)
• Too Easy
• 4 Requests - “ca?”

Alphabet Scan - Third Letter

• Request 1 - “a” - Fail
• Request 2 - “b” - Fail
• Request … - “Fail”
• Request 20 - “t” - Pass :)
• 24 Requests - “cat” :)

Recap: Alphabet Scan

• Via true/false questions.
• We learned “salt” was “cat”
• It took 26 queries to database
• (once we started counting)

Bitwise Scan - Intro

• We need to know binary.
• So what is cat (ASCII)?
• c = 99 (01100011)

• a = 65 (01100001)

• t = 116 (01110100)

Bit-Shifting - Introduction

• Shifting “???” 7 bits
• Remember 0 is an index
• We know 0???????

Bit-Shifting - Next bit

• Shifting “???” 6 bits
• We know 01??????
• So previous + current = now
• So 0 + (1 or 0) = 1 or 0

Bit-Shifting - Next bit

• Shifting “???” 5 bits
• We know 011?????
• So previous + current = now
• So 1 + (2 or 3) = 3 or 4

Bit-Shifting - Skip a few steps

• Shifting all bit locations of first character
• We know 01100011
• We learned “c”.
• Took 8 requests.

Bit-Shifting - Rinse and Repeat

• We learned “a” - 01100001
• We learned “t” - 01110100

Recap: Bit-Shifting Scan

• Via true/false questions.
• We learned “salt” was “cat”
• It took 24 queries to database
• (once we started counting)

• So it was quicker.

Advanced Technique: Mega Payloads

• If injection working.
• Construct query that compounds.
• Run out the memory.

Advanced Technique: 2nd Generation

• Instead of injection.
• Use UGC to insert an injection
• Database might react on that
• Tough to use unless common product
• Forum software, out of box, etc

Funny Injections & Tools

User Generated Injection

• Wait till the scanners read this.

Creative Thinking

• Can’t get a bill if you have no plate.

Creative Thinking - Backfired

• $12,049 in fines.

bit.ly/2SWLbRU

Tool: sqlmap

• Automate everything we discussed.

sqlmap

• Run it against our first example

sqlmap

• Enumeration of data quickly.

• We learned a bit about SQL
• We learned injection types
• We explored some complex injections
• We had some fun

Concluding

Thanks!

connortumbleson.com
@iBotPeaches

http://connortumbleson.com

