
CLICK HERE.exe

XSS & CSRF
Security Meetup

• Last month: SQL Injections

• This month: XSS / CSRF

• Next month: DDoS / DoS

• Meetup Group for times/dates

Month 2 of 12 (February)

https://www.meetup.com/CLICK_HERE-exe/

https://www.meetup.com/CLICK_HERE-exe/

• The Safe Web

• The Malicious Web

• XSS Abuse

• CSRF Abuse

• Protections

Plan of Attack

Who are you?

• Connor Tumbleson

• Sourcetoad Engineer

• Apktool - RE Tool

• @iBotPeaches

• Security was an afterthought

• Protocols were designed with trust

• Didn’t expect dark intentions

The Safe Web

• Blogs

• Message boards

• Universities

• News

Early Internet

• Banking

• Health

• Shopping

• Everything

The Present Internet

The Real Internet

• Internet users main purpose: abuse

• Protocols needed upgrades

• Developers needed teaching

The Malicious Web

• Cross-Site Scripting
• CSS was taken, so XSS

• (I made that up ^)

• Malicious code running on trusted website

• How does that happen though?

So start small: XSS

Browsers evaluate HTML. Simple.

• UCG - User Generated Content

• Comments, Forums, Contact Us etc

• URL Tweaking

How do you inject code?

https://fakedemosite.com/search?query={searchTerm}

https://fakedemosite.com/search?query=

• Test bed: <script>alert(‘test’);</script>

• Place this anywhere

• URL, Comment, Post, Searchbox

How about an example

• The quick test.

• If it works, then untrusted code can run.

• Then what?

The classic alert box.

It’s time to escalate.

• Cookie Theft

• document.cookie (session)

• Key-logging

• onKeyPress (passwords)

• DOM Changes
• action=“malicious.host” (harvesting)

Common XSS Attacks

Demo - Logging

• Reflected XSS
• Think search or URL

• Stored XSS
• Database, UCG

• DOM XSS
• Frontend JS, “SPA”

XSS Categories (Old)

• Bad URL

• Trick someone to load

Reflected XSS

User Attacker

Vulnerable Website

bad link

clicked executed

• Untrusted data in DB

• Emitted into page

• Many could be affected

Stored XSS

• DOM changes based on input

• Two way binding - Vue/Angular/React

DOM XSS

• Server XSS
• Untrusted data comes from server

• Client XSS
• Untrusted data lives at DOM layer

• AJAX, SPA, etc

XSS Categories (Modern)

• Escaping

• Filter

• HTTP Headers

• httpOnly

• CSP Rules

Prevention Techniques (XSS)

• Browsers don’t parse text twice.

• So script tags are never processed

Prevention: Escaping (preferred)

Prevention: Escaping (preferred)

<script>alert(‘foo’);</script>

&tl;script>alert('foo');</script>

Escaped (you)

Prevention: Escaping (preferred)

<script>alert(‘foo’);</script>

&tl;script>alert('foo');</script>

Rendered (browser)

• Guide what you expect

• Validation

• “What is your name?”

• Connor <script>hack you</script>

Prevention: Filter (not preferred)

• X-XSS-Protection HTTP Header

• If URL matches executed JS, then block

• Only protects Reflected XSS

• Browsers dropping in favor of CSP rules

Prevention: Headers (abandoned)

• httpOnly flag when creating cookie

• Prevents cookie being read client side

• (if browser supports it)

Prevention: Cookie Setting (partial)

https://caniuse.com/#search=httpOnly

• Content Security Policy

• A complex header to protect end users

• Yes, it is complex.

Prevention: CSP (future)

• Only load images from x.com

• Refuse to load inline Javascript

• AJAX Requests only to “self”

• Block or ignore violations

Prevention: CSP cont.

https://report-uri.com

http://x.com

Switching to CSRF

• Cross Site Request Forgery

• Executing a request in an unwanted way

• Imagine submitting a form maliciously

• Fake Story Time…

CSRF - Intro

• Lets say we all bank with {bank}

• I send $5 to a friend on their website

• I notice the URL is

• GET bank.com/transfer?acct=Friend&amt=$5

CSRF - Early Internet

• GET probably wasn’t used.

• I notice pattern.

• I change the link to me.

• Victim clicks link, they send me $5

• View Photos

CSRF - Early Abuse

http://badlink

• Yeah that was too easy.

• The world actually used POST

CSRF - Early Abuse

<form action=“bank.com/transfer">

 <input name=“target” value=“friend” />

 <input name=“amt” value=“5” />

 <button type=“submit” value=“Send” />

</form>

http://bank.com/transfer

• I make a comment section on my website

• It also submits a hidden form to {bank}

• If visitor banks with {bank} then

• makes a comment

• I just got $5 from them

CSRF - POST Abuse

• The victim is logged in with {bank}

• Browser can't tell if legit or not

• Browser makes request

CSRF - Wait. How did that work?

Bad Server Victim Legitimate Site

tricked link

submit grab creds

success

• Bank has noticed this abuse.

• They start relying on referrer.

• HTTP Header

• Transfers MUST have referrer of
• http://bank.com/manage

CSRF - POST Prevention Early Web

• Leaks information

• May be empty or missing

• Referrer may be

• http://company.com/sekrit/x-pod-90-pro

CSRF - The Referrer Problem

• Lets make a random string

• Put it on form, look for it during submit

CSRF - The Token Fix

• If someone makes a forged request

• It cannot have the token

• Thus, denied.

• Normally, HTTP 419 (Auth Timeout)

CSRF - The Token Fix

Advanced Time

• XSS attack bypasses ALL CSRF measures

• Load the page, find the token

• Load the token into malicious form

• Submit the form

• Pivoted XSS -> CSRF

CSRF - Why batched with XSS?

Bypass CSRF

• Google Results

• 167k

• Tons of methods

SSRF - What is that?

• SSRF - Server

• Server Side Request Forgery

• So forging a request from a server.

SSRF - Example

• Upload file or give URL

SSRF - Example

• If you put in URL - https://ibotpeaches.com/imgs/yer.jpg

• Server downloads it.

• Maybe because of CSP rules

• Can’t load 3rd party images

• So what happens?

SSRF - Intended Flow

SSRF - Malicious Flow

• If you put in URL - http://127.0.0.1/nginx_status

• Status page for NGINX (default)

• Server reaches out.

• Downloads it.

SSRF - Malicious Flow

• hmm…

SSRF - Malicious Flow

• That can’t be rendered as an image

• Assuming no file validation

• What actually is it?

SSRF - Complete

• Wow

• Tricked a server

• To download a local (internal) file and
return it to me.

SSRF - In Real Life (Google)

https://opnsec.com/2018/07/into-the-borg-ssrf-inside-google-production-network/

SSRF - In Real Life (Google)

https://opnsec.com/2018/07/into-the-borg-ssrf-inside-google-production-network/

• Google Caja “cleans” HTML/CSS/JS

• Needs to download and do magic

• Author noticed downloads came from
internal network

Bounties

• XSS is top 10 OWASP still

• Stay with frameworks for CSRF protection

• SSRF is a real thing

• Don’t roll your own escaping

Concluding

Thanks!

connortumbleson.com
@iBotPeaches

http://connortumbleson.com

